產(chǎn)品別名 |
肥料用Y氨基丁酸 |
面向地區(qū) |
全國(guó) |
細(xì)菌侵染過程中的植物GAD表達(dá)量和γ-羥基丁酸轉(zhuǎn)錄豐度會(huì)上升,致使GABA升高。高GABA合成水平的煙草對(duì)根癌土壤桿菌C58感染敏感性有所下降。GABA可誘導(dǎo)農(nóng)桿菌ATTKLM操縱子表達(dá),使得N-(3-氧代辛?;└呓z氨酸內(nèi)酯的濃度減少,群體感應(yīng)信號(hào)(或激素)下調(diào),影響其對(duì)植物的毒性。GABA在植物與細(xì)菌的信號(hào)交流中也發(fā)揮作用,GABA可以抑制細(xì)菌內(nèi)Hrpl基因表達(dá)(Hrpl基因編碼蛋白使得植物致敏或引起其組織疾?。瑫r(shí)抑制植物體內(nèi)hrp基因表達(dá),使得植物免于過敏反應(yīng)(hrp:控制植物病原體致病能力,并引起過敏反應(yīng))。
γ-氨基丁酸(CAS號(hào):56-12-2 )別名4-氨基丁酸(γ-aminobutyric acid,簡(jiǎn)稱GABA)相對(duì)分子量103.1,是一種四碳、非蛋白氨基酸,在脊椎動(dòng)物、植物和微生物中廣泛存在。γ-氨基丁酸別名4-氨基丁酸(γ-aminobutyric acid,簡(jiǎn)稱GABA),是一個(gè)四碳非蛋白質(zhì)氨基酸,化學(xué)式:H2NCH2CH2CH2COOH;分子質(zhì)量:103.1。GABA呈白色結(jié)晶體粉末狀,沒有旋光性。熔點(diǎn)203℃(分解) ,與水混溶,微溶于乙醇、丙酮,不溶于苯、乙醚,分解時(shí)會(huì)失水生成吡咯烷酮。
GABA在溶液中常以兩性離子(帶負(fù)電荷的羧基和帶正電荷的氨基)形式存在,由于正負(fù)電荷基團(tuán)間的靜電相互作用,使得GABA在溶液中能夠兼具氣態(tài)(折疊態(tài))和固態(tài)(伸展態(tài))時(shí)的分子構(gòu)象,而GABA在溶液中多分子構(gòu)象共存的形式,使其能夠結(jié)合多種受體蛋白并發(fā)揮多種重要生理功能。
植物組織中GABA的含量極低,通常在0.3~32.5μmol/g之間。已有文獻(xiàn)報(bào)道,植物中GABA富集與植物所經(jīng)歷脅迫應(yīng)激反應(yīng)有關(guān),在受到缺氧、熱激、冷激、機(jī)械損傷、鹽脅迫等脅迫壓力時(shí),會(huì)導(dǎo)致GABA的迅速積累。對(duì)植物性食品原料采用某種脅迫方式處理后,或通過微生物發(fā)酵作用使其體內(nèi)GABA含量增加,用這種原料加工成富含GABA的功能產(chǎn)品已成為研究熱點(diǎn)。GABA作為一種新型功能性因子,已被廣泛應(yīng)用于食品工業(yè)領(lǐng)域。利用富含GABA的發(fā)芽糙米、大豆和蠶豆等原料開發(fā)的食品已面市。
比較重要的化學(xué)合成主要有以下幾種:種是采用鄰苯二甲酰亞氨鉀以及γ-氯丁氰或丁內(nèi)酯作為制作GABA的原料,劇烈反應(yīng)并水解后得到的終產(chǎn)物就是GABA;第二種是利用吡咯烷酮作為初的原料,并通過氫氧化鈣以及碳酸氫銨進(jìn)行水解,終使其開環(huán)得到的產(chǎn)物就是GABA;第三種是把丁酸和氨水作為GABA的原料,使其在γ射線條件下進(jìn)行光照反應(yīng)得到GABA;第四種是通過輝光放電的方法,用丙胺和甲酸兩種物質(zhì)進(jìn)行合成得到GABA;第五種是把溴醋酸甲酯和乙烯作為制備GABA的原料,通過聚合反應(yīng)得到4-溴丁酸甲酯,后經(jīng)過氨解和水解后的產(chǎn)物即為GABA。GABA的化學(xué)合成方法都存在反應(yīng)不容易控制、成本比較高的缺點(diǎn)。
在植物中,存在于細(xì)胞質(zhì)中的GAD和線粒體中的GABA-T、SSADH共同調(diào)節(jié)GABA支路代謝,其中GAD是合成GABA的限速酶。植物GAD含有鈣調(diào)蛋白(CaM)結(jié)合區(qū),GAD活性不僅受Ca2+和H+濃度的共同調(diào)控,還受到GAD輔酶——磷酸吡哆醛(PLP)以及底物谷氨酸濃度的影響。這種雙重調(diào)節(jié)機(jī)制將GABA的細(xì)胞積累與環(huán)境脅迫的性質(zhì)和嚴(yán)重程度聯(lián)系起來。冷激、熱激、滲透脅迫和機(jī)械損傷均會(huì)提高細(xì)胞液中Ca2+濃度,Ca2+與CaM結(jié)合形成Ca2+/CaM復(fù)合體,在正常生理pH條件下能夠刺激GAD基因表達(dá),提高GAD活性;而酸性pH刺激GAD的出現(xiàn)是由于應(yīng)激降低細(xì)胞的pH,減緩細(xì)胞受到酸性危害。植物中GABA支路被認(rèn)為是合成GABA的主要途徑。目前,大多數(shù)研究集中在如何提高GAD活性實(shí)現(xiàn)GABA富集。